Vous êtes ici :







Ouvrir l'actualité 15/06/2018 : Matthieu Mercier Institut de Mécanique des Fluides de Toulouse
"Settling particles in a stratified fluid" En savoir plus
Ouvrir l'actualité 23/03/2018 : Anne-Laure Biance, UMR 5306- ILM- Campus de la Doua, Villeurbanne
Dynamic of a topological rearrangement in a bubble assembly En savoir plus
Ouvrir l'actualité 15/03/18 : Chesnokov Alexander - Novosibirsk State University
Dispersive and hydrostatic models of breaking waves on shallow water En savoir plus
Ouvrir l'actualité 23/02/2018 - Flamant Gilles - PROMES, Odeillo
Les particules, nouveau fluide de transfert et matériau de stockage pour les centrales solaires thermiques de troisième génération En savoir plus
Ouvrir l'actualité 09/02/2018 : Lajeunesse Eric - IPGP, Paris
Forme et stabilité des rivières alluviales En savoir plus
Ouvrir l'actualité 26/01/2018 - Restagno Frédéric - LPS, Orsay
Adhesion and slip of PDMS melts on a solid surface En savoir plus
Titre de l'actualité 06/12/2017 : Gennady El - Loughborough University

----- Séminaire exceptionnel -----

mercredi 6 décembre à 11h

en salle 259 à l’IUSTI

Dispersive shock waves in integrable and non-integrable systems

Gennady El - Loughborough University

Dispersive shock waves (DSWs) are dynamic, oscillatory structures forming due to dispersive regularisation of hydrodynamic singularities in conservative or nearly conservative media. Physical manifestations of DSWs include undular bores on shallow water and in the atmosphere, nonlinear diffraction patterns in laser optics, and blast waves in Bose-Einstein condensates.

The mathematical description of DSWs involves a synthesis of methods from hyperbolic quasi-linear systems, asymptotics and soliton theory. In my talk I will describe the modu- lation theory of DSWs which is based on the analysis of the Whitham averaged equations associated with the original dispersive system. This theory was pioneered by Gurevich and Pitaevskii in 1973 by constructing modulation solution for the Riemann problem for the Korteweg – de Vries (KdV) equation, and since then has been developed into a very active research area encompassing a broad spectrum of nonlinear dispersive equations and physical applications. In particular, rich families of solutions have been recently found for systems exhibiting non-convex hyperbolic flux and/or non-convex linear dispersion relation.

The talk will emphasise general aspects of the theory but I will also provide concrete examples which will include both integrable and non-integrable models.
The talk is based on the recent review articles:

Dispersive shock waves (DSWs) are dynamic, oscillatory structures forming due to dispersive regularisation of hydrodynamic singularities in conservative or nearly conservative media. Physical manifestations of DSWs include undular bores on shallow water and in the atmosphere, nonlinear diffraction patterns in laser optics, and blast waves in Bose-Einstein condensates.
The mathematical description of DSWs involves a synthesis of methods from hyperbolic quasi-linear systems, asymptotics and soliton theory. In my talk I will describe the modu- lation theory of DSWs which is based on the analysis of the Whitham averaged equations associated with the original dispersive system. This theory was pioneered by Gurevich and Pitaevskii in 1973 by constructing modulation solution for the Riemann problem for the Korteweg – de Vries (KdV) equation, and since then has been developed into a very active research area encompassing a broad spectrum of nonlinear dispersive equations and physical applications. In particular, rich families of solutions have been recently found for systems exhibiting non-convex hyperbolic flux and/or non-convex linear dispersion relation.
The talk will emphasise general aspects of the theory but I will also provide concrete examples which will include both integrable and non-integrable models.


The talk is based on the recent review articles:

  • G.A. El and M.A. Hoefer, Dispersive shock waves and modulation theory, Physica D
  • 33 (2016) 11-65;
  • G.A. El, M.A. Hoefer and M. Shearer, Dispersive and diffusive-dispersive shock waves for non-convex conservation laws, SIAM Review 59 (2017) 3 - 61.
  • G.A. El and M.A. Hoefer, Dispersive shock waves and modulation theory, Physica D
  • 33 (2016) 11-65;
  • G.A. El, M.A. Hoefer and M. Shearer, Dispersive and diffusive-dispersive shock waves for non-convex conservation laws, SIAM Review 59 (2017) 3 - 61.

 

Ouvrir l'actualité 17/11/2017 - Nouar Chérif - Univ. Lorraine
Convection de Rayleigh-Bénard dans les fluides complexes

En savoir plus
Ouvrir l'actualité 20 oct. 2017 - Sébastien Mercier - LEM3, Université de Lorraine
Comportement des matériaux poreux ductiles sous chargement dynamique. De la prédiction des surfaces de charge à la simulation de l’essai d’impact de plaques En savoir plus
Ouvrir l'actualité 13 oct. 2017 - Dumbser Michael - Universita di Trento
High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics En savoir plus
Ouvrir l'actualité 22/09/2017 : M. Chinaud
Etude de la coalescence d’une goutte en présence de polymères et de surfactants En savoir plus
Ouvrir l'actualité 8/9/2017 - Comtet Jean - LPS ENS
Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions En savoir plus
Ouvrir l'actualité 04/11/2016 : Effets d’interactions sur l’évaporation de gouttes de combustibles à haute température
Lionel Perrin,
invité par David Brutin En savoir plus
Ouvrir l'actualité 23/09/2016 : Molecular Models for Gas-Wall Interactions
Arjan JH Frijns, Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven, The Netherlands
invité par Pierre Perrier En savoir plus


:::::::::::::: Contacts et plan d'accès :::::::::::::: Plan du site :::::::::::::: Infos légales ::::::::::::::